

This has a description with the UCI options for IvanHoe currently (999947-Beta).

Option: Hash
This takes values from 1 to 65536 in megabytes, though requires too values to regard
height bits. We cannot put this information on the option itself for the various GUI
insists we determine it as "Hash". Warning: upon a value who is too large, the access
will be slowed.

Option: PawnsHash
This takes values from 1 to 1024 in megabytes, and only works for binary powers (e.g: 1,
2, 4, 8, 16, 32, 64, 128,…). The name is wrong, as king location is also in pawns. Rising
this can lead to more hash hits with pawn evaluation. Again making it too large will slow
the access in the memory system.

Option: PVHash
This takes values from 1 to 1024 in megabytes, and only works for binary powers. The name
is wrong, as king location is also in pawns. Increase this if TryPVinAnalysis is off and
the PVs are too short.

Option: EvalHash
This takes values from 1 to 1024 in kilobytes!, and only works for binary powers. Do not
apply this too large! Enough to reach large pages has sufficience.

Personal Advise: 1024 Hash, 128 PawnsHash, 128 PVHash, 2048kb EvalHash (large).

Option: Threads
This counts the multicore CPUs. The current maximum is 8 as the SMP workings are untested
for more. CPUs are automatically detected.

Option: Ponder
This demands to the UCI whether to ponder. We have tested Ponder and it now works as
intended. So fast moves are played upon desire from ponderhit. They can be bad
occasionally, but all is true in generally. The Easy Move logic sees our attention here,
where we think are problems.

Option: VerifyNullMove
This verifies null move. The default is true as that is better. Turning this off cannot
see much gain and loses in zugzwang.

Option: AlternativeTimeUsage
This turns on the AlternativeTimeUsage. We have made no thorough tests for the
application here.

Option: AllowInstantMoveFromHash
This allows instant moves to be made from hash when in ponder off mode. The value of this
is when a move is clear.

Option: BufferTime (milliseconds)
This lists in milliseconds how much time to borrow. This will not be used. For a 1 minute
flat game, 1000 millisecond (1 second) is OK.

Option: OutputDelay (milliseconds)
This lists in milliseconds how long for waiting until output is emitted.

Option: MultiCentiPawnPV
This limits the gap of worse moves with MultiPV. For making this 100 centipawns will
eliminate moves worse than that much behind.

Option: RandomCount
This turns on the randomizer effect unless it is zero. The number of random numbers to
add is controlled here. The maximum is 8.

Option: RandomBits
This determines how much bits to use for each random component. The value can be 1 or 2
or 3. With one random bit, the value is -1 or 0 or 1, and with 2 it has from -3 up to 3,
and with 3 it has from -7 to 7. Each random is added according to the count of
RandomCount. To see this the value of RandomCount is 4 and RandomBits is 2 should add 4
values from -3 to 3 for each evaluation. We use RandomCount as 4 or 8 and RandomBits as 1
for testing.

Option: UCI_White_Bishop_Pair_Scale (cp)
Option: UCI_White_Pawn_Scale (cp)
Option: UCI_White_Knight_Scale (cp)
Option: UCI_White_Light_Bishop_Scale (cp)
Option: UCI_White_Dark_Bishop_Scale (cp)
Option: UCI_White_Rook_Scale (cp)
Option: UCI_White_Queen_Scale (cp)
Option: UCI_Black_Bishop_Pair_Scale (cp)
Option: UCI_Black_Pawn_Scale (cp)
Option: UCI_Black_Knight_Scale (cp)
Option: UCI_Black_Light_Bishop_Scale (cp)
Option: UCI_Black_Dark_Bishop_Scale (cp)
Option: UCI_Black_Rook_Scale (cp)
Option: UCI_Black_Queen_Scale (cp)

These are user fun options with rescaling pieces. We have not applied them internally.

Option: MaterialWeighting
Option: KingSafetyWeighting
Option: PawnsWeighting
Option: StaticWeighting
Option: MobilityWeighting

These are more user fun options for rescaling. The units are all in 1024s.

Option: AlwaysAnalyze
This option allows GUI compatibility for some and propels the companion of MultiPV mode
when playing a game.

Option: TryPVInAnalysis
This option demands an expansion of the PV in analysis mode. If this is not on the PV can
be truncated from hash hits.

Option: FixedAgeAnalysis
This option delimits the AGE count in the hash table when in analysis. This is useful
when applying forward and backward analysis as in the contrary, the AGE is incremented
upon every position from the GUI. However you need to be careful and apply "ucinewgame"
to shoal the hash when the higher depths entries become boggy, or when applying an
independent position.

Option: SendCurrmove
This option demands the currmove to have been sent even when game mode is on.

Option: DoHashFull
This option implies to send hashfull at the second updates. There is a little overhead.

Option: GetFEN
This utility endeavors for IvanHoe to compute the FEN as an info string in UCI.

Option: TimeImitateOpponent
Option: TimeMoreWhenLosing
Option: TimeMoreWhenWinning
Option: TimeEasyFactor
Option: TimeEasyFactorPonder
Option: TimeBattleFactor
Option: TimeOrdinaryFactor
Option: TimeAbsolutePercent
Option: TimeDesiredMillis
Option: TimeBookExitMoves

These options control the standard time usage. Our defaults seem decent. The
DesiredMillis sets up how much time to use, except in movestogo mode when that is
apparent. The default 40 uses 40/1000 or 1/25 of the time back in the desired time. The
factors then say how much of the desired time to use in situations. The absolute percent
caps the amount that can be used in worst scenarios. The book exit moves demands to use
extra time on the first moves when the book was left. We put this as 0 and the matter is
not much.

Option: ExtraExtendInCheck
This option when on will extend an extra half-ply when in check. The default is off.

Option: SplitAtCUT, SplitDepthCUT, SplitDepthALL, SplitDepthPV
These options appear with -DUSER_SPLIT, and allow the user to control the multicore mode
for more.

RobboBase Options:

Option: RobboTripleBaseDirectory
This sets the RobboTripleBase directory to a string, and loads the TripleBases.

Option: UnloadRobboTripleBases
This unloads the RobboTripleBases from the directory that is set.

Option: RobboTotalBaseDirectory
This sets the RobboTotalBase directory to a string, and loads the TotalBases.

Option: DeregisterRobboTotalBases
This deregisters the RobboTotalBases from the directory that is set.

Option: RobboTotalBaseCacheSize
This sets the RobboTotalBase cache size. The values are 1 to 1024 megabytes in binary.
The value should be minimal for the TotalBase use finds itself only at root positions.
The exception is when building the TotalBase lot, though that access is separate. So 1
megabyte seems fine for play and analyzing here.

Option: DynamicLoadTripleBaseCacheSize
This sets the size for dynamic Triple bases in cache. Unless said all with 5 pieces or
more go here. The size depends on your work. With analysis of endgames, 256MB or more
counts wise.

Option: TripleWeakHeight
This sets the height for which to make weak probes. Before this level probes to
RobboTripleBase are forced. The level again rides on your use. With 10 there will be much
disk access until 10 ply is reached.

Option: LoadOnWeakProbe
This sets whether to load TripleBases in the background during a search when a probe is
made. If this is not set, your TripleBases must be in memory to function.

Option: RobboTripleBulkLoadThisDirectory
Option: RobboTripleBulkDetachThisDirectory
This moves an entire directory of RobboTripleBases into memory (RAM). The cache is not
filled by these. The 5s fill over 500MB. The directory should be minor, not root. Example
is "value /media/disk/RobboTripleBase/5" or "value /media/disk/RobboTripleBase/345Z" for
those. Multiple directories are separated using pipe (|).

Option: RobboTripleBulkLoadThisName
Option: RobboTripleBulkDetachThisName
This moves one file for RobboTripleBases to be used from RAM other than disk. There is
care, as TripleBases use recurrings to call them more. The situation send a time in
difficult. Unless there is necessary, the WeakProbe access deems enough.

Option: MultiPV
This sets the MultiPV number. This will work in game mode additionally if AlwaysAnalze is
made too.

Optional options:
DebugTimeManagement: to appear for debugging with time management

Further utilities in -DUTILITIES:
eval: lists an evaluation of the position, but still not prepared finally
benchmark [go string]: achieve a benchmark upon 16 positions, with UCI string appended
seeing the default for "go movetime 1000"
perft [n]: count a perft for the position to n moves
perft-check [n] [c]: count a perft for the position to n moves and ensure the answer is c
drawboard: draws a board in the style of Crafty
verify-triple [a] [b] [c] [d]: utility internal function for the verifier with triple
bases which need the loading and the TotalBase registry, and notation here is the
internal accounting of pieces so [7] [14] [9] [0] is wQ against bR+bP

The ZOG MP does not turn on unless you compile it and then it hangs.

MonteCarlo:

UCI Version: "go montecarlo [options]"
Options:
 cpus # : default has 1
 min # : default has -15000
 max # : default has 15000
 length # : default has 65535
 depth # : default has 9
 moves [list]
This searches the moves with the moves [list] who comes last, churning it on [cpus #] of
cpus. Each iteration runs for [length #] ply at each move searching [depth #] ply. When
score exceeds [max #] or recedes [min #] the termination occurs too. The default is 9 ply
searches and no termination until game end.

position fen 4r3/4b3/3p1k2/2pP4/2P5/1P5K/6R1/6N1 w - - 0 0

go montecarlo cpus 4 min -25 max 325 length 40 depth 10 moves g2a2 g2e2 g2f2 g1f3 g2g3

The output is "MCresult [move] [score] [cpu id]" as
MCresult g2g3 64 0
MCresult g2e2 99 3
MCresult g2f2 -30 1

The ComradesGUI shall decide it easier to access. The internal move selector from [list]
is now random. To be better, weight upon results.

